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Abstract
Police body-worn cameras have the potential to improve ac-
countability and transparency in policing. Yet in practice, they
result in millions of hours of footage that is never reviewed.
We investigate the potential of large pre-trained speech models
for facilitating reviews, focusing on ASR and officer speech de-
tection in footage from traffic stops. Our proposed pipeline in-
cludes training data alignment and filtering, fine-tuning with re-
source constraints, and combining officer speech detection with
ASR for a fully automated approach. We find that (1) fine-
tuning strongly improves ASR performance on officer speech
(WER=12-13%), (2) ASR on officer speech is much more accu-
rate than on community member speech (WER=43.55-49.07%),
(3) domain-specific tasks like officer speech detection and di-
arization remain challenging. Our work offers practical applica-
tions for reviewing body camera footage and general guidance
for adapting pre-trained speech models to noisy multi-speaker
domains.
Index Terms: speech recognition, accountability, policing, so-
cial applications, noisy domains

1. Introduction
Over the last decade, police departments across the United
States have rapidly adopted body-worn cameras (BWCs) [1].
This rapid adoption has been spurred on by widespread protests
demanding improved accountability and transparency following
high-profile deaths of civilians involving officers’ use of force
[2, 3]. In some ways, BWCs have resulted in improvements:
the footage is valuable evidence in instances such as litigation
of excessive force cases [4, 5], and analysis of hand-transcribed
footage can identify racial disparities in policing and failures to
practice procedural justice [6, 7, 8]. However, in the absence
of a lawsuit or high-profile incident, most footage is never re-
viewed. Further, reliance on manual transcriptions limits the
scalability of existing automated analyses [6, 9, 8].

At the same time, large pre-trained speech models have
achieved remarkable performance over standardized datasets
[10, 11, 12, 13, 14]. Models like Whisper and Wav2Vec2 also
have demonstrated potential in social good applications, e.g., in
monitoring audio(visual) materials related to long-term elderly
care [15] or child exploitation [16]. However, in applications
involving multi-speaker conversations in noisy environments,
models require application-specific adaptation and evaluation
[17, 18, 19]. Little work has investigated the speech process-
ing of police BWC footage specifically.

Here, we develop and evaluate automatic speech recogni-
tion (ASR) and police officer speech detection (diarization) for
police BWC footage. Automatic transcription of officer speech
would allow extending existing text analyses of racial bias in

hand-transcriptions to new data without requiring expensive
transcription efforts [6, 8]. It would also allow departments to
determine adherence to a procedure by using text classifiers [7]
or keyword searches. Although most reviews are likely to be in-
ternal, some departments publicly release BWC footage or are
mandated to provide access upon request [20, 1]. Thus, speech-
processing technology could support independent audits.

Our primary data is footage from 1,040 vehicle stops con-
ducted by one department in one month, where utterances spo-
ken by officers and community members were previously hand-
transcribed. We use the data to construct training and test data
sets for ASR and officer speech detection. We evaluate ASR
models, with and without in-domain fine-tuning, over the entire
test set, dividing by role (officer or community member), race,
and gender, and we examine the performance of officer speech
detection in combination with ASR.

Our findings provide insight into the best practices and lim-
itations of developing technology in this domain. For exam-
ple, our training data processing pipeline is robust enough that
fine-tuning improves ASR performance by 3-11 points. We also
show evidence that Whisper models learn to mimic transcribers’
representations of transcription confidence by marking difficult
segments as unintelligible. Differences by gender and race are
not significant; however, ASR over officer speech (WER=12-
13% for officers unseen in training) is much more accurate than
over community member speech (WER=43.55-49.07%), which
suggests that models have a high potential for addressing ac-
countability with less risk of compromising community mem-
ber privacy [20]. Finally, we identify diarization, specifically
officer speech detection, as a continued challenge.

2. Data
Video recordings of the 1,040 vehicle stops and hand-
transcriptions were provided to us under a data use agreement
for the management of such high-risk data and under IRB su-
pervision. The data is generally noisy. Prior transcripts were
intended for language analysis, rather than the development of
speech processing tools, so not all speech was transcribed and
diarized.1 Stops contain background noise like wind and traffic.
They contain multiple speakers, and secondary officers, as well
as drivers and passengers, can be situated far from the record-
ing device. Dispatch speech from officers’ radios can often be
heard, sometimes directly overlapping with utterances from the
primary interaction. There is high variance in the clarity of
speech and quality of footage across stops.
Test and Validation Sets. To create reliable test and valida-

1The transcribers were instructed to transcribe only speech by offi-
cers and community members, not police dispatch; they inconsistently
included officer speech to dispatch (vs. to the community member).
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Robust Whisper Prop. of
Alignment W2V2 WER Large WER Final data
Unaligned 65.51 56.78 13.86

MFA 68.42 54.84 12.01
MFA Chunked 61.11 42.04 32.32

W2V2 60.25 43.27 12.72
W2V2 Chunked 68.0 52.27 29.10

Table 1: WER over the full training set (78K utterances) under
each alignment method and what percentage of training data
were ultimately aligned with each method.

tion sets, we hand-align existing transcribed utterances to time-
stamps and correct observed transcription errors. To facilitate
analysis by race, we chose the test data to consist of 50%/50%
stops of white and black drivers. We also choose each test file
to be a stop by a distinct officer and withhold any other stops
made by the same officers (whether as primary or secondary
officers) from the training and validation sets. Thus, we also se-
lected officers who made a small number of stops to minimize
unusable data. Hand-aligning data is extremely time consum-
ing, so we restrict test set stops to contain < 60 utterances.
We similarly ensure there is no overlap in primary officers be-
tween the validation and training set, witholding data as needed,
though we less strictly enforce the separation of secondary of-
ficers, who speak less frequently. We conduct evaluations over
these aligned utterances, discarding un-transcribed speech.
Training Set Alignment. We build a training set by applying
automated alignment tools and filtering poor-quality transcrip-
tions. We determine the start and end time for each transcribed
utterance using the best of 5 alignment methods:
• Unaligned: 1sec granularity timestamps hand-written by

transcribers with heuristics to correct for obvious typos and
extending the start and end by .25sec

• MFA: Montreal Forced Aligner [21] with unaligned time-
stamps as starting points

• MFA chunked: Many utterances are too short for the aligner
to process correctly. Thus, using the unaligned timestamps,
we chunk consecutive utterances up to a total of 20sec. We
run MFA to obtain word-level timestamps and then divide
chunks back into separate utterances, with start and end times
determined by the word-level timestamps

• W2V2: Robust Wav2Vec2 [13] for forced alignment [22]
• W2V2 chunked: Same as MFA chunked, but using Robust

Wav2Vec2 for forced alignment instead of MFA.
For each utterance, we use off-the-shelf Whisper Large

[14] and Robust Wav2Vec2 (W2V2) [13] to transcribe
the audio segment identified by each alignment method
and compare the output with the hand-written transcript.
We choose as the final alignment the one for which
min(WERWhisper,WERW2V 2) is lowest. Table 1 reports
training WER for each alignment method and the percent of the
final training data aligned using each method.
Training Set Filtering. Even after alignment, the training data
is noisy, containing, for example, transcription errors, over-
lapping speech, and unfixed alignment errors. We again use
minWER = min(WERWhisper,WERW2V 2) over the best
alignment to filter out training instances that are likely incor-
rect. We experiment with four filtering criteria, indicating fil-
tered training data size in brackets:

1. Remove instances < 0.5sec and > 10sec [54,600]
2. #1, and remove instances where minWER > 50% [40,361]

# Stops # Utterances Speech Time
Train 795 78,082 61.85hr

Train (filtered) 787 26,121 17.61hr
Validation 8 373 21.24min

Test 20 634 32.41min
Table 2: Final data set sizes. Across the full data set, there are
an average of 91.73 utterances and 3.2 speakers per stop.

3. We define WER[nosubs.] as WER where we do not count
substitutions as errors. This metric is designed to retain in-
stances where there may be errors in the Whisper/Wav2Vec2
outputs (e.g., WER is high) but likely not alignment er-
rors (e.g., WER is driven by substitutions rather than in-
sertions or deletions). We then filter according to #1, and
keep only instances where (minWER[nosubs.] < 10% AND
minWER < 50%). [26,121]

4. #1, and remove instances where minWER > 10% [19,759]
We compare each criteria by using the filtered training

data to fine-tune Robust Wav2Vec2 and examining perfor-
mance over the validation set. Criteria #3 (WER=45.23) and
#4 (WER=44.92) perform similarly and both outperform #1
(WER=49.34) and #2 (WER=48.75). We use #3 when train-
ing subsequent models, favoring the criteria that keeps more
training data. Table 2 reports the final sizes for each data split.

3. ASR
We compare the performance of ASR models off-the-shelf and
fine-tuned on the training data set constructed in Section 2. We
use two of the current best-performing and most popular archi-
tectures: Wav2Vec2 [10] and Whisper [14]. For Wav2Vec2, we
use the Robust model [13], which was pre-trained using a self-
supervised objective on Libri-Light, CommonVoice, Switch-
board, Fisher and fine-tuned for ASR on Switchboard. For
Whisper, which was trained on 680,000 hours of multilingual
and multitask data, we compare small, medium, and large [14].
Thus, both models are intended to perform well in a variety of
domains and over noisy data. We describe the model training
parameters in detail, including the use of decoder-only training
for Whisper large due to compute constraints.

3.1. Experimental Setup

To fine-tune Wav2Vec2, we use model default parameters with
learning rate=1e-5, weight decay=0.005, warmup steps=500,
batch size=32. We report performance with and without a 4-
gram language model trained over the training data transcripts,
implemented with KenLM and integrated with beam size=1500,
lm weight=1.31 and word score=1.31.2

For Whisper models without fine-tuning, we hard-code the
task as transcription and the language as English. For fine-
tuning, we use model default parameters with learning rate=1e-
5, and warmup steps=500. Our experiments are conducted in
a resource-constrained environment. Data protocols mandate
that the footage be stored on a secure restricted-access server,
which does not have sufficient GPU memory to fine-tune Whis-
per large, even with reduced batch size and precision. Thus, we
experiment with freezing the encoder and just training the de-
coder as well as the inverse. We use a batch size of 32 for Whis-
per small and 16 for medium and large. Finally, as Whisper is

2lm weight and word score were tuned following the Bayesian opti-
mization procedure in [10]. We do no other hyperparameter tuning.
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prone to outputting repeated words and phrases, we remove any
words from the model output if they occur > 10 times.

As transcription norms vary between corpora and the body-
camera gold transcripts contain bracketed terms like [unintel-
ligible] and [laughter], we remove all terms in brackets and
use the Whisper text normalizer on both the reference and
model output before computing WER for all models (including
Wav2Vec2 models). For all models, we choose the checkpoint
with the lower validation WER after 5 epochs and train using 1-
2 A40 GPUs. Wav2Vec2 and Whisper small models trained in
< 5hrs; Whisper medium and large models trained in < 16hrs.

3.2. Results

3.2.1. Overall ASR

Tuned Params WERS CERS WERL CERL

None 34.75 24.86 33.07 28.47
Encoder 34.30 23.53 22.82 17.58
Decoder 28.12 20.07 22.26 16.86
Enc+Dec 26.07 18.76 - -

Table 3: Whisper Small (S) and Large (L) validation perfor-
mance with encoder-only or decoder-only training

Table 3 reports validation results (reserving the test set for
final configurations) of freezing either the encoder or decoder
when fine-tuning Whisper large and small. For Whisper small,
decoder-only tuning performs almost comparably to tuning the
entire model (28.12 vs., 26.07), whereas tuning only the en-
coder performs less well (34.30). For Whisper large, freezing
the encoder or decoder provides advantages over no fine-tuning,
though decoder-only tuning converged faster (2 vs. 5 epochs).
Subsequently, we use decoder-only training for the fine-tuned
the Whisper large model.

Wav2Vec2 WER CER Whisper CER WER
[None] 45.01 31.57 Small 32.13 22.83
+LM 38.91 31.27 Small+Tune 22.09 16.30
+Tune 42.20 26.05 Med. 26.21 18.36
+Tune+LM 32.29 25.97 Med.+Tune 23.47 17.78

Large 29.60 22.35
Large+Tune 18.33 13.61

Table 4: ASR Results over police test set.

Table 4 reports the overall WER and CER for each model.
Whisper large with fine-tuning performs the best overall. Fine-
tuning gives improves performance by 3-11pts across models.

Reference Whisper Whisper(tuned)
Yeah. I know, I’m
trying to–

I’ll turn it. Yeah. [unintelli-
gible].

Yeah. [unintelli-
gible] expired like
la– December.

The fire
started in De-
cember.

Yeah. [unintel-
ligible] expired
like December.

[unintelligible]. It’s going to be
a bad traffic.

It’s going to be a
bad traffic.

Table 5: Test outputs of fine-tuned Whisper large

As Whisper is a new model with yet-limited work on under-
standing model performance and fine-tuning effects, we high-
light a few examples from the data in Table 5. In the origi-
nal transcripts, transcribers mark segments they are unable to

W2V2 W2V2 Whisp. Whisp.
tuned+LM tuned

Role [Officer] -.440* -.435* -.791* -.383*
Race [Black] -.028 -.026 -.350 -.034
Gender [F] .106 .088 .215 .091

CM Black [120] 83.67 66.53 66.53 43.55
CM White [130] 88.45 74.02 75.05 49.07
Off. Black [175] 42.14 27.26 19.43 13.11
Off. White [166] 32.80 21.95 22.70 12.50

Table 6: ASR by role/race/gender for Robust W2V2 and Whis-
per Large (not including 3 Hispanic officers). Top: ASR Mixed
Effects Regression. A negative (starred if significant) coefficient
indicates lower WER (better performance). Bottom: WER for
each subgroup. Brackets indicate number of test utterances

decipher as [unintelligible]. While we removed all bracketed
text when computing WER rate for fair comparison of off-the-
shelf and fine-tuned models, examining Whisper outputs re-
veals that the fine-tuned model sometimes outputs [unintelli-
gible]. In some instances, the predicted [unintelligible] exactly
aligns with hand-transcription. However, we also find examples
where Whisper hallucinates transcriptions for difficult content,
whereas Wav2Vec2 more often does not produce output. After
fine-tuning, Whisper hallucinations are particularly difficult to
identify without referring back to the audio, as they often appear
to be plausible statements in an interaction.

3.2.2. Performance by officer/driver, gender, and race

We examine model performance over sub-populations of the
test data, specifically distinguishing between officers and com-
munity members, black and white people, and men and women.
As there is high variance in model performance depending on
the quality of footage from each stop, we use a mixed effects
linear regression model. Each data point in the regression is a
single utterance. The dependent variable is model WER for the
utterance. Role (officer or community member), race, gender
are fixed effects, and the specific stop is a random effect.

Table 6 reports the learned regression coefficients and WER
by sub-population for the best performing Wav2Vec2 and Whis-
per models, off-the-shelf and fine-tuned. ASR performance for
officers is significantly better than performance for community
members by a wide margin. Even the best-performing mod-
els perform poorly at transcribing community member speech.
Community members are situated further from the camera
and typically speak very few short utterances. Even hand-
transcribers often mark their speech as unintelligible, and train-
ing a high-performing model on this type of data may be infea-
sible. This result suggests that ASR could be an extremely use-
ful tool for police accountability with small potential privacy-
reducing impact on community members.

In contrast to prior work, we do not find significant differ-
ences by race or by gender [23]. Subdividing the test data leads
to small data set sizes, which could be skewed by a single out-
lying stop. This potential effect is greater when looking at race
and gender than looking at role, since a low-quality video would
decrease ASR performance for both the officer and the commu-
nity member, whereas in examining race and gender, we are
comparing across footage of different stops. Table 6 does show
WER is lower for white than black officers for most models.
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4. Officer Speech Detection
In Section 3, we use hand-aligned evaluation data, but in prac-
tice, we do not know segmentation or speaker identities in new
footage. As our goal is police accountability, we develop two
models to identify segments of speech by primary officers (e.g.,
officers wearing the camera) and evaluate them using the best-
performing ASR model over the detected speech.

4.1. Methodology

Training Data Processing We adapt the training set introduced
in Section 2. We remove any instances that do not contain ac-
tive speech using an off-the-shelf acoustic scene understand-
ing Mobile-Net [24] architecture trained on AudioSet [25] (Au-
dioSet category 0 < 0.3). We divide remaining samples into
250ms chunks with a 100ms hop and represent each 250ms
segment as a mel-spectogram with 64 mel-filters, computed
with a hop of 10ms, and a window of 25ms. We create a
balanced training corpus by randomly sampling 150K chunks
each of officer/non-officer speech. Since officers are closer to
body-camera microphones (near-field) than community mem-
bers (far-field), we use volume-based data augmentation.

As the raw training data contains non-officer speech that
was not transcribed (e.g., dispatch speech), we also augment the
training set. We divide training files into 250ms chunks with a
100ms hop, keep chunks with a speech score (from the Mobile-
Net model) ≥ 0.5, and merge consecutive chunks that occur
within 1sec of each other. We add all new segments (ones that
were not transcribed) to the training data as instances of not-
officer-speech and then filter and sample the data as described
above. We use these data to train models to classify 250ms
chunks as officer or not-officer speech (with cross-entropy loss).
In-domain classifier We train a custom model from scratch,
which contains 7 convolutional layers with 128 3x3 filters in
every layer and Relu activation followed by max-pooling of 2.
The output of the last layer is passed onto a linear head of 1024
neurons, followed by softmax activation, and the posterior prob-
ability is taken as officer score for that instance.
Universal d-vectors We extract d-vectors as features from
an off-the-shelf model trained over the VoxCeleb dataset for
speaker recognition [26] and train an officer speech classifier,
with the same linear-head architecture as the in-domain model.
Inference We predict voice activity detection (using the same
Mobile-Net model) and officer scores for 250ms chunks with
100ms hops. We consider a chunk to be officer speech if its
voice activity score is > tVAD and its officer score is > tofficer,
and we merge positive chunks if they occur within tsmooth sec
of each other.3 For evaluation, we concatenate the ASR model
output for all identified segments and compute WER against
similarly concatenated hand-aligned officer segments.

4.2. Results

Table 7 reports results for the best performing ASR model over
the automatically detected officer speech segments. There is
a substantial performance decrease between the hand-aligned
segments and the detected segments. The d-vector model per-
formance particularly poorly, likely due to the high difference in
domain between VoxCeleb and police traffic stops. Augment-

3{tVAD,tsmooth, tofficer} are hyperparameters chosen via 20-iteration
Bayesian optimization over the validation set with range [0,1] for
tVAD/tofficer and [0.25,2] for tsmooth. They are {0.93,1.76,0.16} for d-
vector, {0.4,0.67,1.2} for in-domain, and {0.52,0.51,1.1} for in-domain
[aug.]

Model WER CER %S %D %I
d-vector [26] 61.85 53.14 15.50 25.07 21.27

In-domain 49.47 39.83 15.15 21.10 13.22
In-domain [aug.] 31.52 25.29 7.94 11.64 11.93

Hand-aligned 12.80 8.68 5.98 3.97 2.85
Table 7: ASR results over officer detected speech using tuned
Whisper Large. S:substitutions, D:deletions, and I:insertions

ing the training data does substantially improve performance
(49.47 to 31.52 WER), though performance still may not be suf-
ficient for applications. In reviewing model outputs, we identify
that models often misidentify other near-field speech as officer
speech, and the presence of multiple officers complicates the
task, as speech by secondary officers is sometimes scored closer
to community member speech. We also identified several anno-
tation errors, such as segments attributed to the wrong person
and inconsistencies in which speech was transcribed, suggest-
ing these metrics may under-estimate performance. These er-
rors could be removed in hand-aligned test data, but their pres-
ence in training data is still likely to degrade model perfor-
mance, and manually re-cleaning training data (as opposed to
automatic augmentation) would involve a substantial undertak-
ing that may not generalize to other settings.

5. Discussion
We find pre-trained ASR models achieve low WER over police
officer speech, particularly when fine-tuned on automatically
cleaned training data. Whisper specifically achieves low WER
and even learns to mimic transcribers in marking segments as
unintelligible, but can still fail more dramatically over difficult
segments than Wav2Vec2. While prior work has identified ASR
as a limitation in noisy speech domains [17, 18], we instead
find that officer speech detection is a significant challenge in
this setting. There are potential avenues for improvement, such
as explicitly modeling dispatch and secondary officer speech or
using text-based classifiers over ASR outputs [19]. Further, al-
though WER is worse over detected than hand-aligned officer
speech, WER is an imperfect proxy metric for tasks actually of
interest, such as determining officers’ adherence to procedure.
As many errors are driven by misidentified or short utterances,
performance may still be sufficient for tasks like dialog act clas-
sification [7]. While we focus on policing, our work has the
potential to inform adapting ASR models to other noisy multi-
speaker domains as well.
Limitations and Ethical Considerations Our data consists of
traffic stops from one police department. We cannot predict if
results generalize to data from other departments, time periods
or types of police-community interactions. Also, although all
work abides by IRB and data sharing protocols, it has high mis-
use potential. Models could used for purposes other than po-
lice accountability, such as community surveillance. Because
models were trained on private data and pending mitigation of
potential misuse, we are not releasing them at this time.
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